Fundamentals of Data Structures with C : 159

Example

gcd(24, 30) = gcd(30,24) = 6
ged(5,7)=1
gcd(0,9)=9

Some of the important properties of gcd are:

(1) ged(0,0) =0

(2). ged(a, b) = an integer between 1 and min(|al, |b]), for a > 0
(3) gcd(a, b) =gcd (b, a)

(4) gcd(a, b) = gcd (-a, b)

(5) gcd(a, b) = ged(lal, |b))

(6) gcd(a, 0) =|d|

(7) ged(an, b n)=ngcd(a, b)

4.5.1 Euclid's GCD Algorithm: gcd(a, b)

In this section, we use Euclid's algorithm to compute the gcd of two integers efficiently.
We shall assume that only positive integers for a and b are to be given. Euclid's
algorithm is primarily based on the following recurrence relation:

ged (a, b) = ged (b, a mod b)(4.3)
That is, ged(a, b)= a, ifb=0
ged (b, a mod b), otherwise ...(4.4)

C Implementation

In C language, fortunately, we have the mod operator (%) that can be directly used to
compute the gcd recursively. It is shown in Program 4.3.

Program 4.3
ged of two numbers

int ged (int a, int b)
{
if (b == 0) return a;
else return gcd(b, a % b);

The terminating condition for the gcd () function is when b becomes 0, the value of a
is to be returned to the calling program. We shall restrict to show the execution of
gcd () by the call tree structure as shown in Figure 4.3 for a =30 and b = 21.

160 Chapterd » Recursion

gcd(30, 21)
a y a
gcd(21,9) 3
b b
ged(9, 3) 3
c c
gcd(3,0) 3
(a) Call sequence (b) Return path

Fig. 4.3 ged(30, 21) - Call tree

With a = 30 and b = 21, the first recursive call is involved (box-a) with b = 9. Since, b
#0, acall togcd() with a =9 and b =3 (box-b) is invoked. Now, b is not reached
its terminating condition, so once again gcd () is called with b = 3, (box-c). Since, 9 %
3=0,gcd(3, 0) returns a value of 3 to box-c. We do not have any other work to do
after getting the final value, unlike factorial function and therefore this value is carried
to box-b and then to box-a. Finally, the result of gcd (30, 21) =3 is returned of the
calling routine.

4.6 TOWERS OF HANOI

In a monastery in Benares India there are three diamond towers holding 64 disks made
of gold. The disks are each of a different size and have holes in the middle so that they
slide over the towers and sit in a stack. When they started, 1500 years ago, all 64 disks
were stacked on the first tower arranged with the largest on the bottom and the smallest
on the top. The monk's job is to move all of the disks to the third tower following these
three rules.

- 1. Each disk sits over a tower except when it is being moved.
2. No disk may ever rest on a smaller disk.
3. Only one disk at a time may be moved.

The monks are very good at this job after all this time and can move about 1 disk per
second (because disks are very heavy). When they complete their task, THE WORLD
WILL END! The question is, how much time do we have left? This is called as Towers
of Hanoi Problem and Figure 4.4 shows a sample of it. The three towers (also called as
Pegs) are named as A, B and C.

Fundamentals of Data Structures with C 161

(@) (b) (c)
Fig 4.4 Towers of Hanoi problem

The Objective

The previous paragraph gave a bit of history behind the Towers of Hanoi Problem. Let
us now formally state what we are supposed to do?

In this problem, we are given n disks and three pegs. The disks are initially stacked
on peg A in decreasing order of size from bottom to top. We are to move all n disks
from peg A to peg B, satisfying the three constraints stated already. You may use peg C
as a spare or auxiliary peg.

The Method

A very elegant solution results from the use of recursion. However, we start with
mathematical induction applied to this problem and derive a recurrence relation.

The induction method applied to our problem says that if you can solve it for one
disk and if, assuming you can solve the problem for M disks, you can tell how to solve
it for M + 1 disks. Then, you can solve it for any number of disks.

Solving this problem for one disk is very simple- just move it from AtoB.Givena
stack of M + 1 disks, and knowing how to move M disks, can we figure out how to
solve the problem? First notice that the top M disks of this pile would not know about
the bottom disk at all — since it is the largest disk, if it were alone on the tower, any
other disk could move on top of it just like it wasn't there. Let's assume that we have M
+ 1 disks on peg A. By induction, we assume that the top M disks can be moved from A
to B. We are almost through with our task. Because, now we have peg A left with the
largest disk, peg B with the other M disks and peg C empty. Now, move the largest disk
from A to C (see Figure 4.5).

Next, since we have a method that moves M pegs from A to B, we can just re-label
the pegs appropriately (see Figure 4.6). That is,

» A has the M pegs,
= B is the one with the large disk on it that we want to move the other M to, and
= Cis the spare peg.

Now apply our method again for moving M pegs from A to B once again and we are
done!

162 Chapterd » Recursion

I

A B C
(a) Initial status of the three Towers

— ;2 e
A B C

(b) after moving M disks (1 and 2) to B

1
L1 L
B C

A

(c) after moving the largest disk to peg C
Fig. 4.5

"ﬂ‘vl
|] | 2 . |
A B

C

(a) A is re-labeled as C, B is re-labeled as A, Cis re-labeled as B

Fundamentals of Data Structures with c 163

C A
Fig. 4.6 (b) After M disks on peg A (disk 1) topegB
and moving the current largest disk 2to C

Using the idea of recursion, the program for Towers of Hanoi can readily be written and
is shown in Program 4.4. =

Program 44
Towers of Hanoi

void TowersOfHanoi (int n,char src,char dst,
char aux,int *moves)

{
if (n > 0)
{
TowersOfHanoi (n-1, src, aux, dst, moves);
printf ("Move disk %d from peg %cC
to peg %c\n", n, Src, dst) ;
(*moves) ++;
TowersOfHanoi (n-1, aux, dst, src, moves);
}
}

Note that the function TowersO fHanoi () should be invoked as,
TowersofHanoi(n, 'A', 'B', 'C');

When, n = 3, the sample run of the program generates the following result:

Example Run

Enter the number of disks: 3

Move disk 1 from peg A to peg B
Move disk 2 from peg A to peg C
Move disk 1 from peg B to peg C

164

Chapterd » Recursion

Move disk 3 from peg A to peg B
Move disk 1 from peg C to peg A
Move disk 2 from peg C to peg B
Move disk 1 from peg A to peg B
No. of moves = 7

The call tree structure for Towers of Hanoi execution is very difficult compared to other
recursively solved problems. However, the call tree is written (see Figure 4.7) in such a
way that the details of the pegs and value of n are shown in each box. Boxes represent
the recursive invocation of TowersofHanoi () function.

The nodes which are numbered — non-zero-leaf nodes (nodes at the bottom)
correspond to printf () and it actually prints the disk number plus src and dst
pegs. The order corresponds to the same way as that of as the execution sequence as
shown above.

Assume,

* n=3(disks are numbered from small to big)

* A, B and C are the towers in which the source peg is A, destination
peg is B and spare peg is C.

* The dotted arrows indicate the recursive calls and returns.

* The syntax used in the boxes are (n, src, dst, aux)

~ ’

\\
RN L
0,B,A,C lo,A,

Figure 4.7 Call tree for Towers-Of-Hanoi with n = 3

As mentioned already, printf () will be executed when n # 0 in Figure 4.7 to
find the number of moves, we must calculate the number of internal nodes (non-leaf
nodes).

Fundamentals of Data Structures with C 165

....(44
nodes in a general tree is N -1 @4

Where, N — number of branches and h - height of the tree
The Towers of Hanoi tree is a binary tree and hence N = 2. Then Equation 4.4
reduces to,

The maximum number of 'mtemal} N —1

2h +1 - 1

= =211 (@5
1 4.5)
The height of the tree is same as the number of disks,

Therefore, the number of moves = 2"-1

For, n = 3, We have, = 231 =7 moves

Similarly, for 64 disks, the number of moves = 2% 1.

4.7 BINOMIAL CO-EFFICIENT (BC)

A K-combination of an n-set S is simply a k-subset of S. There are six 2-combinations
of the 4-set {a, b, ¢, d}.

ab, ac, ad, bc, bd, cd.

We can construct a k-combination of an n-set by choosing k distinct (different)
elements from the n-set.

The number of k- permutations of an n-set is

n

(n—k)!
The number of k-combinations of an n-set is the number of k-permutations divided by
k!. Thus from Equation (4.6), we have,
n!

PRS-

= K-k

nn-1)@-2)..(n-k+1)=

...(4.6)

n
We use the notation ' (read n choose k) to denote the number of k-combination of

an n-set from Equation (4.6), we have

ny___n | @7
k| Kk(n-k)! B

The number generated for different values of n and k are called as binomial
coefficients. The recurrence relation for Binomial Coefficient (BC) is given as,

168 Chapter4 » Recursion
is divided into smaller and smaller problems so that it can be handled more

easily and naturally. Iteration also can be used for divide-and-conquer, but it
may not be as easier than recursive technique.

4.9 ADDITIONAL EXAMPLES

Though many examples were shown in this chapter on recursive program design, some
new examples related to data structures are dealt in this section.

Example-1 To find the product of n natural numbers.

Finding the product of n numbers (assumed as integers) that are stored in an array a is
the first example we consider in this section. For simplicity, assume the array to contain
the elements from 1st location instead of Oth location. That is,

12 3 4
al=(7 [2 115]

Result =a[1] * a[2] * a[3] * a[4]

The function Prod() is shown in Program 4.6. The function is invoked as
Prod(a, n), n > 0.

Program 4.6
Product of n natural numbers

long Prod (int a[], int n)

{
if (n <= 0) return 0; /* illegal values for n */
if (n == 1)
return all];
else
return a[n] * Prod(a, n-1);
}

In this program a is the array and n is the size of the array. We should think recursively
so that when n = 1, we simply return the contents of all].

That is, Prod(a, 1) =return(l * all]);
When, n > 1, the same task is done again.
Prod(a, 2) = return(a[2] * Prod(a, 1));

Fundamentals of Data Structures with C 169
Since, Prod(a, 1) isalready known, itwould return a[2] * a[l] * 1 which is
what we expect. Continuing in the same manner, for n numbers, we have the Program

4.6.

Example

a[1=[7,2,1,5],n=4

Prod(a, 4)= a[4] * Prod(a, 3)
= a[4] * a[3] * Prod(a, 2)
= a[4] * a[3] * a[2] * Prod(a, 1)
=a[4] *a[3] *a[2] ¥ a[1] * |
=170.

Example-2 To find Maximum element

The designing of Max () function is same as Prod () with a difference that in each
recursive call the current array element and the current maximum (found so far) should
be compared. Next, the bigger one is carried to the previous state and so on until the
main program calling is reached. The array elements of a are assumed to be integers
with the starting position as 1 and the size is n. The C code for finding the maximum
element in an given array a is shown in Program 4.7.

Program 4.7
Maximum in a[1:n]

int Max (int all, int n)
{
int yi
if (n <= 0) return 0; /* illegal values for n */
if (n == 1)
return alll:
else
{
y = Max(a, n-1); /* save current max */
if (aln] >= y)
return aln];
else
return y;

Perhaps the validity of the code is very simple by writing call tree and is shown in

Figure 4.9.
a[]=[15,16,11,17], n=4

172

Chapterd » Recursion

The function int Check_Ascending (const int *a, int n);
// a is an array and n is the number of elements (n>0).

Check_Ascending (a, n) =1, ifn==
Check_Ascending (a, n) =1, ifn>1landa[0]<a[l]<..< al[n-1]
=0, otherwise.

Our solution must rely on recursion and there may not be any loops in the function
definition. Here is one way to solve the problem by first solving a simpler problem of
the same kind:
If there is only one element, the result is 1. That's the escape condition. Otherwise, the
result is 1 if and only if two things are true:

(1)aro0l < af1];and

(2) Elements a[1] to a[n-1] are in ascending order.

Notice that checking (2) is a simpler problem of the same kind. This can be coded in C
as in Program 4.10.

Program 4.10
To find for ascending order

int Check_Ascending (const int *a, int n)

{
if (n < 0) return 0;
if (n == 1) return 1;
else
return (a[0] < a[l)]
&& Check_Ascending(a+1, n-1));
}

When n value is 1, the array is already in ascending order and there is no need to
invoke recursive calls. However, when n is greater than 1, a pair of elements (first two
elements of sub-array) is checked for ascending order. As explained earlier, the reader
can check the working of this program easily.

Fundamentals of Data Structures with C 173

4.10 SUMMARY

= Recursion is a process by which we define some thing in terms of itself. In Latin,
re - means back and currere means to run. A procedure or function that is run
over and over for a definite number of times is recursion.

= Problems like Factorial, GCD, Fibonacci, etc. - use recursive technique to solve.

= The recurrence relation for factorial of a positive of number n is defined as,

ol = {l n=0

n*(n-1) n>0
s The recurrence relation for the nth Fibonacci number can be written as,

1,if n=0
fib(n) = l,if n=1
fib(n-1)+ fib(n—-2),if n>1
» The recurrence relation for GCD of two numbers is,

ged (a, b) = a, ifb=0
ged (b, a mod b), otherwise

The recurrence relation for Binomial Coefficient is,
BC(n,0)=1, if k=0

BC (n, k) = {BC(n,n)=1, if k=n
BC(n-1,k)+BC(n-1,k-1),if n>k>0

» The iterative method is efficient than recursive approach. However, certain
problems like Towers of Hanoi may be solved very easily based on recursive
method.

176 Chapter4 » Recursion

return f(x, y/2);
}
Find £(4,3).

4.9 Trace the execution of the following:
(a) Fact(6);

(b) Fib(9);

(c) GCD(7, 19);

(d) ToersOfHanoi(6);

(e) BC(6, 10);

(f) Power(5, 3);

(g) Reverse("Bangalore");

4.10 Write a C program to find the odd numbers in a given array. Employ recursive
approach to solve this problem.

4.11 Repeat the problem 4.10, but now find the even numbers only.

5.1

5.2

INTRODUCTION

The study of queues helps in solving many problems in data structures and other areas.
Queue is also a linear list in which elements are inserted and deleted from both the ends
(unlike stack where deletion and insertion takes place at the same end).

An elementary discussion on definitions of queues through ADT, special types of
queues, applications of queues appear in this chapter. More precisely, we develop
algorithms and C code for the following topics:

= Ordinary queues

s Circular queues

» Priority queues (apq and dpq)
= Double ended queues (deque)

All the above mentioned queues will be implemented using arrays.

DEFINITION (ADT SPECIFICATION)

A queue is a linear list in which additions and deletions takes place at different ends.
The end at which insertions take place is called the rear, and at which deletions happen
is called the front.

In our examples, we always assume that the right side is the rear end and the left is
the front end. This assumption is only for convenience and not mandatory.

178

Chapter5 » Queues

The moment we say a queue, it is easy to understand that it is same as queues that we
see in our day to day life; people standing in milk booth, cinema theatre, banks, ATMs,
passport office, consulate offices, etc. The queue policy is that the service is provided to
people who have arrived first. In other words, queue operates on a First-In-First-Out
(FIFO) manner. The operations insertion and deletion do not happen at the same end.
For instance, insertion occurs in rear and deletion occurs in the front. Let us understand
the working of a queue with the help of a diagram shown in Figure 5.1.

0 1 2 3 0 1 2 3
L1 T T 1 Lal [T 1]
front=-1 T 1.
rear = -1 front rear
(a).Initial status of the Queue (Empty) (b) Element A is inserted
0 1 2 3 0 1 2 3
LalB] [1] LAlBJ]c] 1]
T T T T
front rear front rear

(c) Element B is inserted (d) Element C is inserted

0 1 2 3
L [BT cT]
T 1

front rear
(e) Element A is removed

Fig. 5.1 Queue addition and deletion

When no elements are in the queue, it is called as empty state (shown in figure
5.1(a)). Notice that, two pointers front and rear are maintained for queue operations
(compare this with Top of stack).

The elements are added into queue based upon the rear pointer and deletion takes
place based on the front pointer. The front pointer remembers who arrived first. When
no elements are in the queue, front and rear will be set to —1. When an element A is
inserted (see Figure 5.1(b)) both the pointers point to this element. However, when the
next element B is added (Figure 5.1(c)) rear points to B where as Jront still points to A,
because A has arrived first. Figure 5.1(e) shows a situation, where queue deletion
occurs. Since, A is removed from the queue, front pointer now points to the second
element arrived, i.e., B.

ADT for the Queue
Similar to stack, the ADT for an ordinary queue can also be given (see Figure 5.2).

Fundamentals of Data Structures with C

179

ADT Queue
{
specification:
ordered list of elements;
front and rear pointers for either end;
operations:
Qinsert(x) : Add element x to the queue;
QDelete() : Return the front element:
QFull () : Return true, if the queue is full;
QEmpty () . Return true, if the gueue is empty;
}
Figure 5.2 ADT for a Queue.

In addition to the four operations given in Figure 5.2 you may add two more:

Last () : Return the last element of queue:
First() : Return the first element of queue;

The Last () operation returns the contents of the queue pointed by rear pointer but it
does not alter its value. Similarly, First () returns the contents of the queue pointed
by front, and it does not alter its value. In fact, for our discussion of the rest of the
topics, we do not need these two operations and hence it is left to the reader to use them
appropriately.

5.3 REPRESENTING QUEUESINC

An important item for a queue to operate is a container to hold the queue elements. In
C, we have arrays, which takes care of queue elements and front and rear are simple
" integer variables. We will consider the elements of the queue are of integer type and
hence we declare an integer array. The queue template can be written as,

#define MAX 10
struct que

{

}:

int items [MAX];
int front;
int rear;

typedef struct que * Queue;

The queue members are accessed using the C syntax as given below:

Queue q; /* queue variable */
q -> items[i]; /* queue items */
g -> front;

q ->

rear;

180 Chapter5 » Queues

5.3.1 Queue Initialization

Before any queue operation is done, initializing its members is very important. You
have seen in Figure 5.1 that the initial status of the queue is that the front and rear
pointers should have,

g->front = -1;
g->rear = -1;

If we wish to add an element x to the queue it is to be done based on rear. Hence, the
following syntax is used,

g->items[g->rear] = x;

5.3.2 Implementing Queue insertion - Qinsert() function

The objective of this section is to show how an element can be inserted into the queue.
Elements can be added to the queue only when there is some space in the array.
Therefore, before you attempt to add an element check for the availability of space in
the queue.

Secondly, once we are sure that some vacant space is available, then increment the
rear pointer and add the element. This is because, rear pointer always points to a
filled element in the queue (like Top in stack). The function Qinsert () is shown in
Program 5.1. Note that the parameter q is a reference parameter as the queue status
changes after the execution of this function.

Program 5.1
Queue Insertion

void Qinsert (Queue q , int x)

{
if (QFull(qg)) /* check for overflow */
{
printf ("Error-overflow\n");
return;
}
g->items[++g->rear] = x;
if (g->front == -1)
g->front = 0;
}

One more work has to be done before we complete our design. Assume that a new
element is being added to the queue from the empty state. We mentioned earlier that,

| Fundamentals of Data Structures with C 181

increment rear pointer and add the element. Now, rear will be pointing to the Oth
location. However, front will still be equal to 0 (see below).

0 1 2 3 0 1 2 3
1T 1T T 1 Al T 1T |
front = rear = -1 front=-1 T
rear

When we try to delete from the queue, the operation is invalid as £ront is not pointing
to A. Hence, whenever the first element is inserted in the queue, make front to point
to 0.This is shown in Program 5.1 as,

if (g->front == -1) g->front = 0;

Thirdly, the elements cannot be added into queue indefinitely because there is a
limitation in array size (#define MAX 10). Therefore, we must flag an error when
rear reaches MAX - 1, called as queue overflow. The working of Qinsert ()
function is shown in Figure 5.3, assuming MAX = 4.

1 2 3

0 1 2 3 0

I I Coo [T T |
front = rear = -1 T 7
front rear

(a) Empty Queue (b) Add 10

0 1 2 3 0 1 2 3
[10 | 20 | [] 10 [20 T 30 | 40 |

T T T
front rear front rear

(c) Add 20 , (d) Add 30 and 40

0 1 2 3
10 T 20 [30 | 40 |
T T
front rear
(e) Add 50 (Overflow!)
Fig. 5.3 Queue insertion
When elements 10, 20, 30 and 40 are inserted in the queue, rear pointer reaches

MAX - 1 (that is, 3). Hence, no more elements can be added. This is an example of
queue overflow that will be handled by QFull () function.

182 Chapter5 » Queues

5.3.3 Implementing Queue Deletion — QDelete()

The objective of this section is to design a function to delete an element from the queue
with the following constraints:

(i) We must obtain the first element in the queue.
(ii) The queue should not be empty.

To satisfy the (i) constraint, the element pointed by front should be considered for
deletion. The second condition is to check whether the queue is empty or not and for
this function QEmpty () will be used. Program 5.2 shows the QDelete () function
with only one parameter q of type Queue and it is a reference parameter as well.
Whenever we delete an element from the queue, its status will change.

Program 5.2
Queue deletion

int Qdelete (Queue q)
{
int temp;
if (QEmpty(q))
return(-1); /* underflow */
temp = g->items([g->front];
if (g->front == g->rear) /* queue is empty */
g->front = g->rear = -1;
else
g->front++;
return(temp) ;

After deletion, front pointer is incremented to point to the next element in the queue.
Wait!, it can not be incremented blindly this way. Look at the below figure that shows
a situation where only one element is present.

0 1 2 3

L1 T3]]
T 1

front rear

When QDelete () is called, element 30 is saved in the local variable temp. If we
simply advance front, it would point to a junk value. Whenever,
front == rear the queue becomes empty especially during a deletion operation.
So, front = rear = -1 is done to make sure that the queue behaves like a fresh
one. The queue empty status is detected by calling QEmpty () function and is

Fundamentals of Data Structures with C 183

explained later in this topic. Queue deletion is explained starting from the Figure 5.3(f)
status and is shown in Figure 5.4.

0 1 2 3 0 1 2 3
10 [20 [30 | 40 | ™ T 20 [30] 40 |
T T T T
front rear front rear
(a) Initial Queue status (b) Element 10 is deleted
0 1 2 3 0 1 2 3
1T _T30]4] [1 [4]

T T T T
front rear front rear
(c) Element 20 is deleted (d) Element 30 is deleted

0 1 2 3

I T

front = rear = -1
(e) Element 40 is deleted and front and rear pointers are reset.

Fig. 5.4 Execution of Qdelete()

When front catches rear, both the pointers are reset to -1 as queue becomes
empty.

5.3.4 QFull() & QEmpty() functions

Both the functions receive ps as parameter of type Queue. The parameter need not be
of reference type. The queue full occurs when rear pointer is MAX-1 and queue

empty occurs when front pointer -1. Both the functions are shown in Program 5.3
and 5.4.

Program 5.3
Queue Full

int QFull (Queue q)
{
if (g->rear == MAX-1)
return 1;
else return 0;

184 Chapter5 » Queues

Program 5.4
Queue Empty

int QEmpty (Queue q)

{
if (g->front == -1) return 1;
else return 0;

5.4 CIRCULAR QUEUE

One of the major draw backs of an ordinary queue is unnecessary wastage of memory
as already discussed is Section 5.3. Consider the Figure 5.4(c), with front = 2 and
rear = 3. Since the maximum size of the queue is 4 any further addition in the queue
will result in an overflow error. But, the queue is actually not full! You have locations
0 and 1 empty.

We can solve this problem considering the queue as a circular one, rather than as a
flat queue. This means that, when rear pointer reaches MAX - 1, it is set to O so that
new elements can be added. This suggests that we must know that there is still space
available in the queue. Also, under these circumstances rear will be behind front
pointer (see Figure 5.5).

TN ST
oY, oNY,

front T front T Trear
Fig. 5.5 Circular Queues

5.4.1 The template

We prefer to go for a new structure definition, instead of using the definition of an
ordinary queue. This is to make the coding easier as you will understand soon. An
additional member ~ a counter - is added to the definition of the ordinary queue as
show below:
struct cir_queue
{
int count;
int front;
int rear;
int items[MAX];

Fundamentals of Data Structures with C 185

typedef struct cir_queue * CQueue;

The role of count is to maintain the number of elements present in the queue at any
point of time. We will also assume that the circular queue members are initialized as,

count = 0;
front = 0;
rear = -1;

5.4.2 Implementation of CQinsert() function

This function takes on two parameters cq and x. As usual cq is of type CQueue and
reference parameter. We wish to insert element x in the queue and is of value
parameter, as we don not change its value in the function.

The major task lies in the design of the formula for rear. The requirements are,

(1) During the addition of elements from 0 to MAX - 1 and rear pointer should
simply be addressed to the corresponding locations.

(2) When rear ruches MAX - 1 and assuming that there are few vacant positions, it
should be made to point to 0.

This can be accomplished using a mod operation (%) which is available is C as an
operator.
cg->rear = (cg->rear + 1) % MAX; ...(5.1H)

The +1 is because C arrays start from 0. With the initial value of rear being -1, the
rear pointer will move as (assuming MAX = 4).

When,
rear = -1; rear=(-1+1)%4=0
rear = 0; rear=0+1)%4=1
rear=1; rear=(1+1)%4=2
rear =2; rear=2+1)%4=3
rear =3; rear=3+1)%4=0

Therefore, with rear reaching the maximum size of the queue, it is set back to 0. The
Program 5.5 shows the CQinsert () function.

Program 5.5
Circular Queue Insertion

void CQinsert (CQueue cq , int x)
{
if (CQFull(cq)) /* check for overflow */
{
printf ("Error-Queue Full\n");
return;

186 Chapter5 » Queues

cg->count++; /* update count */
cg->rear = (cg->rear + 1) % MAX;
cg->items[cqg->rear] = x;

5.4.3 Implementation of CQdelete() function

The design of CQdelete () is same as the insert function, as the formula for front
pointer is to be obtained. This function returns the deleted element to the calling
‘program and therefore its return type is declared as int.

Program 5.6 give the code for deleting as element from the circular queue.

Program 5.6
Circular Queue Deletion

int CQdelete (CQueue cqg)

{
int temp;
if (CQEmpty(cq))

return(-1); /* underflow */

cg->count--; /* update count */
temp = cg->items|[cg->front];
cg->front = (cg->front + 1) $ MAX;
return(temp) ;

}

Since the front pointer should also work circularly, that is when if reaches MAX - 1
it should be set to 0, we use the mod operator %. The formula is as follows.

cg->front = (cg->front + 1) % MAX ...(5.2)

The circular queue is checked for its empty status using the variable count. When
count is zero, obviously queue does not have any elements and retrieving leads to
underflow. We will demonstrate the working of both insert and delete functions using
the Figure 5.6 Assume MAX = 4.

0 1 2 3 0 1 2 3

count=3 | 10 [20 | 30 | | count=4[10 T 20 [30 | 40 |
T T)

front rear front rear

(a)Initial status (b) Add 40

Fundamentals of Data Structures with C

1 2 3

0
count=4 [10 | 20 | 30 [40 |
: T T

front rear
(c) Add 50 (overflow)
0 1 2 3
count =2 r I | 30 | 40 |
T
front rear

(e) QDelete, 20 is deleted

0 1 2

3
count=2 | 50 | [[40 |
T T
rear front

(g) QDelete, 30 is deleted

0 1 2 3

count =2 r50 I 60 | I J
T T

front rear

(i) Add 60

187

0 1 2 3
count=3 [] 20 | 30 [40 |
i) T
front rear

(d) Qdelete, 10 is deleted

0 1 2 3
count =3 r50 l l 30 I 40 J
T T

rear front
() Add 50

0 1 2 3

count:lFSOl | I 4]
T 7

rear front

(h) QDelete, 40 is deleted

Fig. 5.6 Working of a Circular Queue

Figures (a) to (d) is self explanatory. Figure (e) shows the circular queue with two
elements. When 50 is tried for insertion, this element is added at the position pointed by
rear, i.e. 0. (see Figure 5.6(f)) and count is incremented.

rear = (3 + 1) $4 =20

Similarly, Figure (h) shows how front is brought to Oth position.

CQFull() and CQEmpty() functions

The circular queue is full when count reaches the queue size (MAX) as we cannot
detect based on front and rear pointer rules. In the same way, when count =0,
no elements can be there in the circular queue.

188 Chapter5 » Queues

5.5 DOUBLE ENDED QUEUE (DEQUE)

Definition

A double ended queue, also called as deque, is a linear list in which insertion and
deletion are done at both ends. It is a special kind of queue where the queue policy may
not appear to be strictly followed. Figure 5.7 shows a typical structure of a deque.

i J0f2[3] T 7
T7T T7T
insert delete insert delete
front front rear rear
Fig. 5.7 A typical deque

Generally, elements are added at the rear end as per the definition of the queue. But, in
a deque we allow insertion at the front end also. Similarly, in addition to front deletion,
we allow rear deletion as well. Hence, there are four operations permitted for a deque.

1) Front Insertion.
2) Front Deletion.
3) Rear Insertion.
4) Rear Deletion.

5.5.1 Working of a deque

You may be wondering when we allow insert and delete operations on either end, how
does the queue behave? When we invoke any of the four operations as seen in Figure
5.7, it should be performed and the appropriate element is to be added (or deleted). We
will select the same structure definition like a circular queue with a static array to hold
the deque elements (see Figure 5.8).

{ [10]2 [30] | i
T T
front rear

(a) Initial configuration of the deque

t 5 |10] 20 [30] | H
T T
front rear

(b) Element 5 is inserted at front end

Fundamentals of Data Structures with C 189

! T10]2 [30| 40 | |
T T

front rear
(c) Element 40 is inserted at rear end

i [>T 20] 30 | 40 | i
T T
front rear
(d) Front deletion — 10 is deleted
i T10]2 | 3%] | |
T T
front rear

(e) Rear deletion — 30 is deleted
Fig. 5.8 The deque operation

Figure (c) and (d) are same as ordinary and circular queue-nothing new. But, Figure (b)
and (d) are new operations in which you see that element 5 is added to front of element
10 and the front pointer is pointing to element 5. This of course is violating the queue
discipline, as somebody who arrives newly stands ahead of 10 rather than standing after
30. When you delete at front with this deque contents, you get 5 deleted.

Similarly Figure (d) shows what happens when rear deletion is carried out. The
element 30 is deleted and rear pointer is decremented by one and points to 20.

5.5.2 Implementation of InsFront() and DelRear() functions

Designing these two functions efficiently is not an easy task. For example, when we
want to add an element to the front, it should be decremented by one to accommodate
the new element. But if front is already pointing to O then front = front — 1, leads
negative value for front pointer. This is not acceptable. To avoid this, we can work in a
circular fashion. That is, when front = 0, simply make this to point to MAX - 1 (last
position in the deque). The C code given in Program 5.9 shows this operation and also
assuming the following initialization:

count = 0;
front = 0;
rear = MAX - 1;

Program 5.9
Insertion into front of a deque

void InsFront (DQueue dqg, int x)

{
if (dg->count == MAX)

190 Chapter5 » Queues

{ printf("Full\n"); return; }
if (dg->front-- == 0) dg->front = MAX - 1;
dg->items[dg->front] = x;
dg->count++;

}

Program 5.10
Deletion from rear in a deque

int DelRear (DQueue dq)

{
int t;
if (dg->count == 0) return -1;
t = dg->items([dg->rear];
if (dg->rear-- == 0) dg->rear = MAX - 1;

dg->count--; return t;

The design of rear deletion is same as front insertion except that rear pointer takes the
place of front pointer (see Figure 5.10). In the normal case when an element is deleted
at the rear end, the rear pointer need to be decremented. However, when it is in Oth
position it cannot be decremented but made to point to MAX - 1.

Displaying the contents of a deque can be done using the accessing formula of a
circular queue. The code is shown in Program 5.11.

Program 5.11
Displaying contents of a deque

void Display (DQueue dq)

{
int i, f;
if (!DQEmpty (dq))
{

f = dg->front;
for (i = 1; 1 <= dg->count; i++)
{
printf("sd ", dg->items([f]);
f={(f + 1) % MAX;
}
printf("\n");
}
else printf("DQueue Empty!\n");

Fundamentals of Data Structures with C 191

5.6 PRIORITY QUEUE

An ordinary queue works on FIFO policy, but the order of deletion in a priority queue
depends upon the element priority. Elements are deleted either in increasing or
decreasing order of priority rather than in the order in which they arrived in the queue.

Definition

A priority queue is a collection of elements, each one having an assigned priority.
Insertion and deletion are two basic operations to be done even for this queue.
However, deletion operation is somewhat different.

We classify two types of priority queues based upon the way in which the elements are
deleted. '

(1) Ascending priority queue (Min Priority queue)

= Element with minimum priority or value is to be deleted.
(2) Descending priority queue (Max priority queue)

= Element with maximum priority or value is to be deleted.

The elements in a priority queue need not have distinct priorities; this means that two or
more elements can have the same priority. The abstract data type (ADT) specification
for an Ascending Priority Queue (apq) is shown in Figure 5.9.

ADT apq
{
specifications:
finite collection of elements in a list each
with an associated priority.
operations:
ApglInsert (x) : Insert an element x in a apq.
ApgMinDelete() : Return the element with minimum
priority.
}
Figure 5.9 ADT for a Min Priority Queue
Example

Assume that in an Internet browsing center, the users are to be allotted the machines on
a priority basis. Each user pays a fixed amount per use. However, the time needed by
the users may vary. The objective of the owner would be not to keep any machine idle
and maximize his returns.

To accomplish this task ascending priority queues may be used to maintain the users
who are waiting for the machine time. Who ever has asked lesser time will be put in a
higher priority.

[N

192

Chapter5 » Queues

5.6.1 Implementation techniques

An efficient implementation for the priority queue is to use a heap (discussed in
Section 7.10). In this section we develop array implementation for apq (or dpq). To
differentiate between the priority of an element and its actual value, we shall modify the
queue structure as,

struct pr_que
{
int pr;
int items;
}
struct pr_que pg[MAX];

Figure 5.10 Template of a priority queue

The front and rear pointer may be declared separately to complete the definition of the
priority queue. Alternatively, the pr-que structure and the pointers (front and
rear) can be grouped under another structure definition as,

struct pq

{
struct pr_que[MAX];
int front, rear;

}i

struct pq p:

To access the priority of an element pointed by front, use
p-palp.front] .pr

Using the definition shown in Figure 5.10, the priority queue elements would appear as
in Figure 5.11.

The array pq [0:MAX~1] has two data elements in each location — the priority and the
actual value (considered as char type).

Fundamentals of Data Structures with C 193

5.7 SUMMARY

A queue is a linear list in which additions and deletions takes place at different
ends. The end at which insertions take place is called the rear, and at which
deletions happen is called the front.
The queue policy is that the service is provided to people who have arrived first. In
other words, queue operates on a First-In-First-Out (FIFO) manner.
The C functions for queue insertion, queue delete, queue full and queue empty, etc.
were developed.
Circular queues are memory efficient than ordinary queues. Instead of considering
a flat queue we can imagine a queue to be of circular type. This means that, when
rear pointer reaches MAX - 1, it is set to 0 so that new elements can be added,
provided there is some space in the queue.
A double ended queue, also called as deque, is a linear list in which insertion and
deletion are done at both ends.
A priority queue is a collection of elements, each one having an assigned priority.
Insertion and deletion are two basic operations to be done for this queue as well
based upon the assigned priority.
There are two types of queues called as ascending priority queue or apq and
descending priority queue or dpq.

- Element with minimum priority or value is to be deleted in an apqg.

- Element with maximum priority or value is to be deleted in a dpqg.

58 EXERCISES

5.1

52
53

54
55

5.6

What is a queue? Mention some of the applications of queues in general problem
solving.

Implement an ordinary queue using static structures (that is, using arrays).

Under what conditions a queue may become (1) Full and (2) Empty? Give
relevant figures.
What are the drawbacks of an ordinary queue and how will you overcome it?

Write the queue contents after every operation as given below:
(Assume, MAX = 4)

(D Qinsert(11); @) Qinsert(44);
2) Qdelete()™> 8) Qinsert(55);
3) Qdelete();) Qdelete();
4) Qinsert(11); (10) Qdelete();
&) Qinsert(22); (11) Qinsert(66);
(6) Qinsert(33); (12) Qdelete(77);

Repeat problem 5.6, but use a circular queue.

194 Chapter5 » Queues

5.7

5.8

59

5.10

5.11

5.12

5.13

Explain Ascending and Descending priority queues and bring out all possible
methods of their array implementation issues in C.

Simulate the following problem:

Assume that a super market has two queues Q7 and Q2. Each customer has an id
and the number of items purchased, y. The queue Q2 is populated when the
number of items exceeds 10 for each customer, and if it is less than or equal to
10, then they will be put in Q7. Write C functions

(a) To add a customer in the appropriate queue.
(b) To delete the customer from queue Q1, if it is not empty. In case, if it
is empty then delete from Q2. If both are empty flag an error.

While designing your C functions, use static data structures only. Do not
consider the queue as a circular one.

Develop a complete C program to simulate the working of a priority queue using
arrays. You must have functions that would insert, delete, modify an element
(integer) in the queue. Trace your program using an appropriate data set of your
choice (consider n = 5).

In this problem, you must concatenate two queues retaining the same order of
arrival in both the queues.

Assume that suddenly we decide that a queue has to become a stack and a stack
has to become a queue, for some reason. Develop two separate functions to do
this.

The City Traffic department wants to simulate the following:

There are four signal lights kept in a road junction. We will assume that they are
numbered as R1, R2, R3 and R4. The vehicles arriving at all these four roads
have to be kept in separate queues. The deletion (movement of the traffic)
process should happen in a circular fashion starting from R1, R2, R3 and R4.

Design an algorithm to operate two queues using a single array just to save
memory space. You must write Qinsert() Qdelete() functions for this type of
queue.

6.1

Chapte I

Linked Lists

INTRODUCTION

So far, the data objects that we have discussed were all stored in an array - for example,
stack, queue, etc. The data objects were accessed using a formula, because the elements
were stored in contiguous locations. In this chapter, we discuss a linked representation
for the instance of each data object. No formula is used to locate individual elements.
Linked representation with dynamic memory allocation offers a new dimension to data
storage and retrieval.

Following topics will be explained in depth:

1. Singly linked lists
2. Circular linked lists
3. Doubly linked lists

Under each topic, we will show how to implement the data structure like stack, queue,
etc. using linked lists. There are many problems that uses linked lists to represent the
data. For instance, to represent a polynomial, linked representation is an ideal choice.

6.2 SINGLY LINKED LIST - DEFINITION

In the linked representation, each data object is represented as a mode. Each node
consists of two compartments - the first one is the value of the data object and the
second is the information regarding the location of the other nodes. This explicit

S

196

Chapter6 » Linked Lists

information about the location of the adjacent nodes is called a link or pointer (see
Figure 6.1).

first—)QI'Hezlq—)Lesl;'é """" >I e,.INULLl | ‘ii l ,L—I_>

data link
field field

Fig. 6.1 Linked representation of a list of elements

In Figure 6.1, e, is the data element and the arrow indicates the link field that
points to the next node. The variable £irst is a pointer pointing to the first node.
Since each node has exactly one link, this structure is called as a singly linked list. The
node with data element e, has no link to other nodes as this is the last node. Notice that
its link field has a NULL or 0.

6.3 LINKED LIST - A closer look

You may notice that a linked list does not require maximum number of node
specification. It can grow or shrink dynamically making it more memory efficient.
Compare this with an array representation where the number of elements needed to be
specified in advance (specifically).

Since, no formula is used to locate an element in a linked list, the address of every
node is stored in its previous node. That is, e;, links to that for ¢; + 1, 1 < i < n this
suggests that the nodes may be scattered in memory. Hence, unless these nodes are
linked through pointers, it is not possible to locate each element. The nodes can be
added or deleted in the linked list at run time. This is done by allocating the memory is
a heap and this is the technique followed by most of the compilers.

6.4 ALGORITHMIC NOTATIONS

To enable us to write algorithms for linked list based problems, we must define
algorithmic notations. These notations are purely for the purpose of writing the
algorithms and can not be used in C programs. The variable names and their meanings
given below will also be applicable through out this chapter.
(1) first — a pointer to the first node of the list.

(2) link(first) — address of the link field of first.

(3) info(first) — data element field of first.

(4) last — address of the end node.

(5) NULL - a special address with value 0.

Fundamentals of Data Structures with C 197

Example

Consider a typical linked with 4 nodes, assuming that the information field (or data
field) is of char type shown in Figure 6.2.

ﬁrﬁTl-l—ﬂBlj—#Dl—chl/l

last
Fig. 6.2
Applying the notations shown in Section 6.4, on the linked list shown in Figure 6.2, we
have
- (1) info(first) yields T
. (2) info(last) yields C
(3) first = link(first); first to point to the second node.
(4) info(link(first)) yields B
(5) current = link(first) current to point to the second node .
info(current) yields B
(6) Accessing the fields of pointer variable when it is pointing to NULL is
illegal.
(7) first = getnode(); allocate dynamic memory to first.
(8) free(first); deallocate memory of first.

Notice that the statement shown in serial number 3 is useful in traversing the list, if it is
executed repeatedly. In a linked list you can move through the list one node at a time
using this kind of statement. Traversing will end when the last node’s NULL field is
reached.

6.5 - ADT FOR LINKED LISTS

The abstract data type (ADT) specification for a linked arrangement of a list is shown
in Figure 6.3.
ADT LinearLinkedList
{
specification:
finite collection of zero or more nodes. Each
node has an information field and a link field.
operations:
Create(x) :Create an empty linked list and add x
at front or rear.
Destroy() :Delete all the elements (nodes) in the
list.

198

6.6

Chapter 6

4

Linked Lists

Length() :Return the length (number of nodes) in

the list.

Find(k,x) :return the kth element of the list in
X, return 0 if there is no kth element,
return otherwise.

LDelete(x) :delete the element x in the list and

return the same. Return the modified
‘list.

Insert(k,x):Insert element x just after kth

element return the modified list.

Display():Display the contents of the 1list on
screen.

Fig. 6.3 ADT for a linked list

The operations specified for a linked list in Figure 6.3 need not necessarily be the only

set, but additional operations may be added. This generally depends upon the particular
problem, which we are trying to solve.

In general, Create() and Display() are two basic operatlons required
invariably for all linked list based problems. Also, all representations of the ADT must
satisfy the specification and operations.

IMPLEMENTATION USING C

A linked list is a collection of nodes. Each node has two different types of information.
The first field is information filed, may be of any primitive or structured data types like

int, float, char, etc.,’and the second one is a pointer field. Since, a node specification

combines two different data types, we prefer a structure definition as shown below

(assuming an integer info field).

struct List
{
int info;
struct List *1link;
}
typedef struct List * NODE;

The second member is a pointer type and its data type is struct List, because the
link field of every node points to a node again. This type of structure definition is
knows as self-referential structure. Notice that before completion of definition of the
list structure, it uses a member *link. This is why it is called as self-referential.

Fundamentals of Data Structures with C 199

6.6.1 Dynamic Memory Allocation to a Node

. The nodes in a list grow (or shrink) dynamically. Initially, there may be, say, four nodes
created and if there is a requirement for few more nodes then, nodes can be added to the
list at run time. Therefore, every node should get the memory dynamically and is done
usingmalloc () function in C./The syntax of malloc () function is as follows,

current = (void *) malloc (size in bytes);

This is an incomplete or incorrect definition, but we will correct this soon. The
malloc () function expects the size (in bytes) of the memory to be allocated in heap
dynamically. Since this memory could be used for storing any type of data, it returns a
void pointer. To balance the data types on either side, we write

‘current = (NODE) malloc (sizeof(struct List));

assuming, current is of type NODE. Invariably, all linked list programs will use this
method to obtain dynamic memory.

Example

" Any number of pointer variables can be made to point to a linked list or an individual
node provided it is of same type as the list. We will demonstrate the operations with
linked lists by showing the following series of statements. Be sure that the dynamic
memory-is allocated for the pointer variable before you put any data element or retrieve
from it (see Figure 6.4) Assume, first, last are of type NODE.

first

—[2 1]

Step 1: first = (NODE) malloc (sizeof(struct List));

first

Step 2: first->info = 10;
first

Step 3: first->link = NULL; A

first

Step 4: last = first;
last
first

Step 5: last->info = 20; n
last

Step 6: current = (NODE)malloc(sizeof (struct List));

) current
Step 7: current~>info = 30;

W
B

/|

200

Chapter6 » ' Linked Lists

current->1link = NULL;

£1 current
irst
Step 8: first->link = current; -_—;l 20 |—|\—)| 30 /]
last
first erent
Step9: last = current; _-)I 20 | _'_>| 30 l7|

ast

Fig. 6.4 Simple linked list operations

In Step 1, first points to an uninitialized node - this means that the contents of info
field and 1ink filed are junk values. In Step 2 and Step 3 element 10 is stored in the
info field pointed by first, and NULL (or 0) in its 1ink field

Note the syntax,

= first points to a node.
* first->info and first->1ink to access the structure members.

The pointer variable last also points to the same node pointed by first (Step 4). Notice
that the info field can be altered by using last (Step 5). Step 6 creates one more node
pointed by current and is initialized to 30 (Step 7). To join two nodes pointed by
first and current, simply put the address of current into the 1ink field of
first so that both the nodes form a chain (see Step 8).

If you loose the address of the first node of the linked list (by some means), then
you have no way to get back it. Therefore, you must be extremely careful when you
operate with linked lists. Consider the following piece of C code,

free(first);

Assuming that first points to a linked list of say 4 nodes, executing this statement
leads to deallocating the memory of the first node (not all nodes - you can only
deallocate one node at a time) and returning this memory to the heap. Once the memory
is deallocated, you can’t use first to access the list.

6.7 LINKED LIST OPERATIONS

\

This section will address the operations pertaining to linked lists based upon the ADT
specification. Every operation is discussed with the objective, the design, relevant
figures, and C code.

